The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts.
نویسندگان
چکیده
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.
منابع مشابه
Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise s...
متن کاملMicrotubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...
متن کاملMicrotubule-Induced Pins/Gαi Cortical Polarity in Drosophila Neuroblasts
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Gai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughtercell-size asymme...
متن کاملZygotic development without functional mitotic centrosomes
The centrosome is the dominant microtubule-organizing center in animal cells. At the onset of mitosis, each cell normally has two centrosomes that lie on opposite sides of the nucleus. Centrosomes nucleate the growth of microtubules and orchestrate the efficient assembly of the mitotic spindle. Recent studies in vivo and in vitro have shown that the spindle can form even in the absence of centr...
متن کاملInscuteable-dependent apical localization of the microtubule-binding protein Cornetto suggests a role in asymmetric cell division.
Drosophila neuroblasts divide asymmetrically along the apical-basal axis. The Inscuteable protein localizes to the apical cell cortex in neuroblasts from interphase to metaphase, but disappears in anaphase. Inscuteable is required for correct spindle orientation and for asymmetric localization of cell fate determinants to the opposite (basal) cell cortex. Here, we show that Inscuteable also dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 128 7 شماره
صفحات -
تاریخ انتشار 2001